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Coherent neutron fields and the Lie algebra sZ(2, R )  
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Institut fiir Theoretische Physik, Technische Univecsittit Graz A-SO10 Graz, Austria 

Received 30 June 1992 

Abstract. The application of Glauber's definition of quantum coherence allows the 
introduction of neutron fields of partial coherence under the assumption that the complete 
occupation number space is a direct product of Fenni subspaces. Excitations are described 
by 'collective' creation and annihilation operators which span an algebra isomorphic to 
the sl(2, R) algebra. The associated coherent states are of partial coherence and the finite 
dimensional representation of the 4 2 ,  R )  algebra is not regularly coherent. In contrast, 
the transition to an infinite dimensional representation space results in regular coherent 
properties of the field. This is demonstrated usiing the representation space of the su(1,l)  
algebra which has areal isomorphism to the d(2. R )  algebra. The coherent states calculated 
from Glauber's condition for coherence are completely coherent, and are, moreover, 
identical to those found by Barut and Girardello [9] in starting from a f ir  more abstract 
argumenr 

1. Introduction 

Coherence describes, in classical field theory, the ability of spacetime interference at 
different points. Wolfs correlation functions [l] are used to describe this property of 
electromagnetic fields. In case of laser light and other 'non-natural' sources an 
expansion to higher order correlation functions is necessary. Quantized fields on the 
other hand,  with their emphasis on the particle aspect do not, at first sight, fit into 
such'a picture of coherence. 

Nevertheless, it is proved to be possible to describe coherent particle fields~inside 
'the framework of quantum electrodynamics using correlation functions [2,3,9]. In 
this case coherence is defined by a random spacetime coincidence of field particles 
and this property is described by a factorization rule of the nth order correlation 
function G'"'(x,, . . . , x,; x,,, . . . , x,): 

G(")(xl,. . . , x.; x., . . . , xl) 

. .  . 

= Tr{pE(-'(x,) .  . . E + ) ( X J E ( + ) ( X ~ )  ~. . E ( + ( X ~ ) }  

=(lE(-)(xl). . . E(-)(xJE(+)(x,J . . . E(*) (x , ) ] )  
n 

= n (IE'-)(xj)E(+)(xj)I);  n = 1,2,. . .,a (1) 
i = l  

where E ( - )  and E(+) are, respectively, photon creation and annihilation operators; p 
is the density matrix 

p=l)(l. ( 2 )  
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Each state la) which satisfies equation (1) represents a coherent state of the photon 
field. We speak of complete coherence if the states la) satisfy equation (1) even for 
n + 00; on the other hand, if equation (1) can only be fulfilled for finite n, we speak 
of partial coherence of nth order. 

It is most satisfying that such a definition of coherence is in full agreement with 
the definition of coherence in classical field theory. In cases of well defined (i.e. a 
fixed phase correlation exists between different space points of the field) the number 
of particles is undetermined because of the uncertainty principle between the number 
of particles and the field strength. Consequently, we have no correlation between 
particles at different space points except by accidental processes. 

Other authors [5-81 discussed expansions of the theory of quantum coherence 
using the fact that coherent states la) of boson fields are equivalently described by 

(i) the solutions of the eigenvalue equation 

E Ledinegg and E Schachinger 

b l a ) =  ala); (albt=a.*(al (3 1 
with 01 an arbitrary complex number, and the Heisenberg operators b and b' which 
obey the commutation rules 

[ b , b ] = [ b t ,  bt l=O; [b, b t ] = E .  (4) 

D ( a )  =exp{-f[aI*} exp{ab'} (5 )  

(ii) applying the operator 

on the vacuum state 10) which is defined by 

b10)-0. ( 6 )  

Such an operator generates all possible coherent states la) which are described by 

It is certainly of interest to extend the definition of coherence according to equation 
(3) or (5) by replacing the Heisenberg algebra {b,  bt ,  E }  by a more structured Lie 
algebra of the su(p, q) type which is so important in elementary particle physics. Barut 
and Girardello [ 5 ] ,  for instance, derived general coherent states based on equation (3) 
using the elements of the noncompact algebra su(1,l). Definition (5) was also used 
to define generalized coherent states using more general Lie algebras [ 6 , 7 ] .  

Glauber's factorization rule (1) wasinainly developed for bosonic systems; neverthe- 
less, it was possible to expand it to fermionic systems [4,10-121. It was one of the key 
results of such an expansion [4] that it was not possible to factorize the correlation 
function of nth order, with the result that there are no coherent Fermion fields in the 
sense of equation (1). Only the introduction of uniformly correlated states [lo] which 
obey a Poisson distribution in the limit of infinite particle numbers allowed the 
construction of coherent Fermion fields. One application of this rather abstract concept 
was discussed by Ledinegg and Schachinger [ll]. They considered electrically neutral 
fermions emitted by a stochastic source, for instance neutrons emitted by a reactor 
core which can be collimated to form a neutron beam. In such a system we have no 
causal relations between the various neutron creation processes and this is expressed 
mathematically by a state space 92 which is the direct product of Fermi subspaces 92("): 

~ = ~ ' 1 ' @ c p ' @ .  . .@ojp"'. (8) 
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In such a model, coherent neutron states are defined in analogy to equation (1) as the 
solutions of the factorization rule for the n-th order correlation function: 
G'"'(x,, . . . , x.; x,, . . . , xl) 

=Tr{p$-'(x,) I.. $(-'(xo)$+)(x,J.. . i,?+)(xl)} 
=(I$(--)(x*) .  . . $(-)(x")$+)(x") ;. . $(+'(X& 

= fi ( l ~ ( - ' ( x ~ ) ~ ( + ) ( x j ) l ) .  (9) 
, = I  

The operators $(-'(x) and $+)(x) are field operators which are built from the original 
Fermi creation and annihilation operators a t  and a by means of 'collective' creation 
and annihilation operators tt(q) and i ( q )  [ll]. They increase (decrease) the particle 
number of'uniformly correlated states' Im), E 3 which describe m neutrons of momen- 
tum q in their respective subspaces ( m  S n). The action of n*'(q) and i ( q )  on the states 
Im), is described by 

(10) 
i(q)lm), =J;iifl(n; m)Im-% 
i t(q)lm),  = & G i f , ( n ;  m)lm+l), 

with 

(equation (6-8) of Ref. 10). In the limit 
lim fi(n; m)  = limf,(n; m) = 1, (12) n-m "-m 

the operators st(q) and n*(q) become standard Bose creation and annihilation operators 
while they behave entirely like Fermi operators in the limit n + 1. 

It is the inclination of this paper to discuss some group theoretical aspects of the 
above model for neutron coherence. We can do so, as Ledinegg and Schachinger 
already discussed in great detail the physical implications of such a system in calculating 
the coherence time or spacetime correlations [ll, 121. The group theoretical aspects 
are developed by showing in chapter I1 that the collective creation and annihilation 
operators span a sl(2, R) algebra. In chapter 111 coherent states are derived using the 
factorization rule (9) and it is shown that these states are of partial coherence only. 
On the other hand, it is also shown that the eigenvalue equation (3) does not have a 
solution. 

This is the result of a finite representation space which is based on the collective 
neutron states which were constructed from a physical argument. It is of course also 
possible to relate the step operators of the sl(2, R) algebra to an infinite representation 
space. Such a representation allows again, naturally, the introduction of coherent states 
using either the eigenvalue equation (3) or the factorization rule (9). It is now 
appropriate to use the step operators of the su(1,I) algebra which has a real isomorph- 
ism with the d ( 2 ,  R)  algebra. Coherent states ofthe su(1,l) algebra have already been 
calculated~by Barut and Girardello [5] using the eigenvalue equation (3). Chapter IV 
then shows that Glauber's factorization rule results in completely coherent states and 
that these states are identical to the ones found by Barut and Girardello. This is a fine 
example to demonstrate how the coherence properties of a system change if the set of 
eigenfunctions of the Cartan subalgebra belongs to different representations of a given 
Lie algebra. 
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2. Collective creation and annihilation operators and their Lie algebra 

Each Fermi subspace %(")e% (cf equation (8)) allows only states of occupation 
number 0 or 1, i.e. only free Fermi particles of identical momentum q. fixed bispinor 
component and fixed spin orientation are possible. If we assume these Fermi particles 
to have the same a priori probability in their respective subspaces, states Im), of a 
certain number of particles (m s n )  which may be detected simultaneously can be 
constructed as 

E Ledinegg and E Schachinger 

where {U,. . . U,,,} denotes the set of possible combinations of m occupied subspaces 
in the total number of n subspaces. ("'IO)* and ("'Il), are the two eigenstates of the 
u-th Fermi subspace. The set of orthonormal states {lm),, m =0,1,. . . , n }  spans the 
state space BF. 

Experimentally, the correlation function is measured by particle detectors which 
are placed at different space points. Each detector absorbs particles of each subspace 
%("), a feature we would like to express by 'collective' annihilation and creation 
operators, [ll] 6(q) and $ ( q )  respectively. They are defined by 

where the a,(q) and a t (q )  are standard Fermi annihilation and creation operators 
acting in the subspace 9'"): 

They observe the usual anticommutation rules in their respective subspaces. To express 
the fact that in general there will be no Pauli exclusion between independent Fermi 
absorbers, operators belonging to different subspaces are supposed to commute with 
each other: 

[a,(q), a,(d1 = [ a l ( q ) ,  a t ( d l =  [a.(n), a h ) ]  =a V # P  (17) 

with 

[a, b]=ab-ba. 

From these definitions it becomes transparent how the physical properties of the 
detectors used in a coherence experiment will affect its outcome. 

We can expect from equations (15)-(17) the collective creation and annihilation 
 operators to span an algebra isomorphic to the d(2, R )  algebra. Therefore, we only 
have to calculate the explicit form of the commutation rules. 

Equations (10) describe the action of the collective operators on the states Im), 
and these equations establish the basis from which the Lie algebra of the collective 
operators can be determined. Obviously, the Lie product 

[Z, $1 = &p-a '̂r? (18) 
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is neither proportional to the unity operator nor to a linear combination of a  ̂ and a '̂. 
Thus, we define the operator 

8= [d, 6 7  (19) 
where we have dropped the explicit q argument in the understanding that from now 
on all operators are assumed to be of the same argument. each state I m ) ~ 9 &  is 
an eigenstate of 26' and of cl';, Im) is also aneigenstate of b: 

To complete the argument, the action of the Lie-products [c?, 61 and [a^', 61 on the 
state [ m )  is calculated 

(22) n 
This follows immediately if the states Im - 1) and Im+ 1) are rewritten using equations 
(10). 

The relations (19), (21) and (22) define a Lie algebra IC} of the form 

c=  aa^+pLG'+y6 (23) 
with 

(24) 
- 2  - 2  

n n 
and the arbitrary real numbers a, p, and y.  A basic transformation 

[&b ]=- -a^  [a^',b]=-a^' [ci,a^']=b* 

n A  
- b = - J o  J;ia^=J- &a^'=J+ (25) 2 

results in the commutation rules 

[Jo ,  J+l= * J* [ J+, J-] = 25, (26)  
which generate, as expected, the real Lie algebra d ( 2 ,  R) [13]. Furthermore, we have 

Jbl j; m') = m'j j; m') 

J+lj; m') =Jj(j+ 1) -m!(m'+ 1)lj; m'+ 1) 

J-lj; m ' )=J j ( j+  1) -m'(m'- 1) l j ;  m'- 1) (27) 

with m'=m-jandj=n/Z.  

3. Coherent neutron states associated with the sl(2, R )  algebra 

It was already pointed out by Glauber that the factorization rule (1) and the eigenvalue 
equation (3) are equivalent conditions for completely coherent states if the creation 
and annihilation operators span a Heisenberg algebra. To show this, he employed the 
eigenvalue equation 

E ' + ' ( X ) ( r Y ) = & ( X ) I a )  (28) 
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which is equivalent to equation (3) and compared its results to the coherent states 
found from solving (1) for n + 00. 

This fact suggests the definition of a regular coherent representation of an algebra. 
Such a representation has the significant property that identical coherent states are 
found by either solving the factorization rule or by solving the eigenvalue equation of 
the step operators. 

The obvious next step is then to investigate whether the finite dimensional (non- 
unitary) representation of the sl(2, R )  algebra introduced by equation (27) is regular 
coherent or not. We, therefore, start with the eigenvalue equation 

J&)= ala) (29) 

E Ledinegg and E Schachinger 

and use the ansatz 
m i  

The coherent states are found from 

J J j ,  m) = J j ( j + ~ )  -m(m - 1)lj; m - 1) 
= g ( j ,  m)lj; m-1) 

This results in the recursion relation 

Cj,, = .g-'(i, m)G,m-,.  (33) 
Equation (32)  requires Cj,j-O with the consequence that all the other coefficients q,m 
( m  # j )  are zero as well and the system has no states of complete coherence. 

Nevertheless coherent neutron states can be found from Glauber's factorization 
rule (9). To show this, we define in analogy to [lo], equation (I l ) ,  the spinor field 
operators e(+) and $(-I as 

with 

f, = exp{ f(qx - E ~ C J ~ , ~  (4). (35) 
x = (xo, x) is the four-dimensional 'spacetime' vector, U,,, is the bispinor component 
of polarization r and a fixed bispinorindex a, (a, r = 1,2,3,4) and q = (Eo ,  4). Transfor- 
mation of equation (30) to occupation space results in [4, IO, 111 -- 

q( 1-41 )-={q( 4 14 1)3" l S s G 2 j  (36) 

with the states 
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the 'right-hand operation' 

I = J-I )q 

m 

and the 'left-hand operation' 

7 )q =J+l L 

If both operations are to be performed as it is the case in equation (36), the right-hand 
operation is performed first. We find for instance: 

or 

These results are used in equation (36) and it is sufficient to study it for a fixed value 
of j as j -  and J+ do not change the subspace { l j ;  m')} according to equation (3.l). We 
find 

with 

2 2 .  
j 

"=- j+ ,  
a2 = Z l%.l f& 

The coefficients 

(43) 

a, ;=  f ? ( j , m ' - v ) ; r = m ' + j  (44) 
"=O . .  

on the left hand side of equation (42) are elements~of an upper triangle matrix A ( j )  
of dimension 2j. Such a representation simplifies the solution of equation (42) for the 
coefficients lG,m12 because this equation can be transformed into 
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The A,, are the algebraic complements of the a , ,  from equation (44). The remaining 
coefficient q,-j is determined from the normalization condition (ala) = 1 and Glauber’s 
factorization rule indeed results in coherent states 

E Ledinegg and E Schachinger 

with 

and 

As in our model j =  n / 2  is a fixed and finite number, the states (46) are only of 
partial coherence and they correspond to a theory which is entirely based on the ability 
of particle fields to interfere with each other. It has again to be emphasized that this 
result depends on our delinition how particles can be detected and how correlation 
functions can be determined experimentally. 

It is the formal result of this chapter that this finite dimensional representation of 
the sI(2, R )  algebra is not a regular coherent representation as it results only in coherent 
states of partial coherence. 

4. Coherent states and the algebra su(1,l) 

We mentioned already at the end of the introductory part that it is also possible to 
define step operators of the sl(2, R)  algebra in relation to a representation which is 
only bounded below and to calculate then the coherent states using either equation 
(9) or equation (3). We demonstrate this by using earlier results of Barut and Girardello 
[ 5 ] ,  and investigate the su(1 , l )  algebra 

[Lo, L*l = *L* [L+,  L-] = -Lo (49) 

J*+*& L, J o * h .  (50) 
(J* and Jo are the operators of equation (27).) Barut and Girardello [5] calculated the 
complete set of eigenstates of equation (3) in an irreducible representation of the 
su( 1 , l )  algebra which was bounded only below. The connection to Glauber’s definition 
of coherence is established by calculating the coherent states which follow from the 
solution of Glauber’s factorization rule equation (9) using the same representation. 

which has a real isomorphism to the sI(2, R )  algebra, namely 

Thus, we define the eigenstate \I)  of the & operator 

Loll) = 110 (51) 
and it becomes immediately apparent from equation (49) that the operators L+(L-) 
are shift operators which increase (decrease) the eigenvalue I by one. If we denote the 
smallest value of I by 4, we get 

6 + r = A  (52) 

with the integer number A. Thus the spectrum 6 is discrete and bounded below. 
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We define new states 14, m) and desnibe the action of the Loperators by 

1 L-14, ni) =--JA( A -  1 -24) 14, A - 1) 

&I+, fi)=(*-+)lA (53) 
43 

which corresponds to the discrete (infinite dimensional )Dc(+) representation of the 
su(1, l )  algebra [14]. 

Glauber's factorization rule . .  

differs from equation (36) only in the fact that s is now only bounded below. We 
introduce states 

and 

as a consequence of equations (53) and (55). As a result, the coherence condition (54) 
transforms into a system of equations linear in IGI? 

m E-1 c \C$ (7 i i -v ) f : (+;A-v)=(Y2s  s =l ,2 , .  . . ,m 

lc*+llz(A + 1)f?(+; A+ 1) = aZlC,12 

m=s " = O  

which can be solved recursivly in comparing line s to line s + 1: 

or 

. a* CO 
In m II?==,f1(+; v )  

c. =- 

- - (aa) * ~ ~ r * ' ~ ( - 2 + )  . .  
mP2(e--z+)  . 

As~a  result we find the states of complete coherence with - (,Da)*1'~/~(-24) 
ILy)q = CO zo mr1/2(A -2+) IA)q 

with CO determined from the renormalization condition 
(21a12)" 

~ = l ~ o ~ z ~ ( - 2 + )  L ~ ~ ! ~ ( ~ - ~ + ~ .  
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These states are neither orthogonal nor linearly independent. In passing we would like 
to note that these coherent states are certainly different from those one would obtain 
in the limit of equation (12) in connection with equation (9) as those would then be 
based on a Heisenberg algebra. 

A comparison of equations (61) and (62) with the coherent states calculated by 
Barut and Girardello [5] by explicitely solving the eigenvalue equation 

proves that their solution is identical to ours. Thus, the D'(+) representation of the 
su( 1 , l )  algebra is a regular coherent representation. This is also valid for the representa- 
tion of the d(2, R )  algebra which is isomorphic to the D + ( @ )  representation. 

Consequently, a regular coherent representation of a rank one Lie algebra is found 
in all cases where coherent states which were obtained from the application of Glauber's 
factorization rule on one pair of creation and annihilation operators are proportional 
to eigenstates of one of these operators. Is, moreover, the representation space spanned 
by states which allow a physical interpretation, we can also speak of physically 
meaningful coherent states. 

Accordingly, the finite dimensional representation of the si(2, R )  algebra used by 
Ledinegg and Schachinger [ l l ]  to describe coherent neuwon fields allowed a physical 
interpretation but did not result in a regular coherent representation (i.e. only coherence 
of n-th order). On the other hand, the infinite dimensional representation of the su( 1,l) 
algebra (and its isomorphic equivalent of the si(2, R )  algebra) was proved to be regular 
coherent but the state space was spanned by vectors which could not be interpreted 
physically. In both cases, the definition of the physical properties of the particle 
detectors used in the experiment played a critical role in the argument. 

References 

[l] Wolf E 1958 Proc Phys. Soc. 71 267 
[2] Glauber R J 1963 Phyr. Reo. 130 2529 
[3] Glauber R J 1963 Phys Reo. 131 2766 
[4] Ledinegg E 1967 Z Physik 205 25 
[ 5 ]  Barut A 0 and Girardello L 1971 Commua Moth. Phys. 21 41 
[6 ]  Perelomov A M 1972 Commun. Math. Phys. 26 222 
[71 Rowe D I and Rymann A G 1980 Phys. Reo. Lett. 45 406 
[SI Basu S D 1992 1. Murk Phys. 33 114 
[9] Ledinegg E 1966 Z. Physik 191 177 

[lo] Ledinegg E 1979 Acta Phys. Avstriacn 51 229 
[Ill Ledinegg E and Schachinger E 1983 1. Phys. A: Math. Gen. 27 2555 
[I21 Ledinegg E and Schachinger E 1984 Atomkernenergie-Kerntechnik 44 275 
[131 Sattinger D H and Weaver 0 L 1986 Lie Groups and Algebras with Applications to Physics, Geometry 

[141 Barut A 0 and Fronsdal C 1965 P r m  R. Soc A 287 532 
and Mechanics (New York Springer) 


